2015中考数学复习:平面几何六十个定理
1、勾股定理(毕达哥拉斯定理)
2、射影定理(欧几里得定理)
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分
4、四边形两边中心的连线的两条对角线中心的连线交于一点
5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、三角形的三条高线交于一点
8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,
11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
12、库立奇*大上定理:(圆内接四边形的九点圆)
圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半
14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点
15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)
16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上
19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,
21、爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的中心构成的三角形也是正三角形。
22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。
23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1
24、梅涅劳斯定理的逆定理:(略)
25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线
27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.
28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点
31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)
33、西摩松定理的逆定理:(略)
34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。
35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。
36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏)。
37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。
39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。
41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。
42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。
43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线。
44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。
48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆。
49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。
50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。
51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。
52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。
53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。
54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。
55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。
56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。
57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。
58、笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
59、笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。
60、布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点。
60、巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线
来源:中考网
- 院校动态
- 招生计划
- 学校答疑
- 中考资讯
- 分数线
漳平职业中专学校2024级新生开学流程
莆田艺术学校2024年秋季开学致学生及家长们的一封信
安溪陈利职业中专学校2024年秋季中职24级新生入学须知
福州旅游职业中专学校24级新生必看!入学指南来啦~请查收!
亲爱的同学: 祝贺你成为教育厅首批达标中职学校——泉州市泉港航运职业中专学校2024级新生,全体师生欢迎你的到来。为确保新同学入学报到有序完成,结合教育主管部门要求,现将入学报到有关事项通知如下:
新学期将至,厦门信息学校2024级普职融通班的新生9月1日开学,其余专业新生9月8日开学。现就开学报到事宜通知如下,请各位家长和学生仔细阅读。
亲爱的同学: 盼望着,盼望着,新的学习就要开始了!新学期、新气象、新期待,新的征程正在开启,福州第一技师学院期待与你一起谱写新的华章。为便于你顺利入学,请务必认真阅读以下内容并做好相关准备工作:
厦门市集美职业技术学校2024级新生入学指南来啦,请查收!
德化职业技术学校2024年秋季军训告知书
德化职业技术学校2024年秋季开学致家长和学生的一封信
闽南理工学院2024年高等教育自学考试体制改革试点专业(专科)招生计划
泉州农业学校2024年招生计划
福建省三江技师学院2024年招生计划
建瓯市技工学校2024年招生计划
南平市闽北高级技工学校2024年招生计划
南平技师学院2024年招生计划
政和县中等职业技术学校2024招生计划
松溪县中等职业技术学校2024年招生计划
光泽县职业中专学校2024年招生计划
浦城职业技术学校2024年招生计划
泉州艺术学校是中专吗?在快速变化的时代背景下,泉州艺术学校不断探索创新教育模式。通过引入数字化教学、在线教育等新技术手段,学校为学生提供了更加灵活多样的学习方式和资源;同时,也鼓励学生进行跨学科学习和创新实践,培养他们的综合素质和创新能力。那么,泉州艺术学校是中专吗?下面,老师带你们一起来了解一下。
整个校园弥漫着浓厚的艺术氛围。无论是走廊上的艺术画作、雕塑作品还是教室内的装饰布置都充满了艺术的气息。这种环境不仅激发了学生对艺术的兴趣和热爱;也让他们在潜移默化中提升了审美能力和艺术修养。那么,泉州艺术学校什么时候开学?下面,老师带你们一起来了解一下。
除了专业技能的培养外;泉州艺术学校还注重学生综合素质的提升。学校鼓励学生参与体育锻炼、社会实践等活动;培养他们的团队协作能力、沟通能力和解决问题的能力;使他们成为全面发展的艺术人才。那么,泉州艺术学校要怎么报名?下面,老师带你们一起来了解一下。
泉州艺术学校培养了一大批优秀的艺术人才;他们在国内外舞台上取得了骄人的成绩和荣誉。这些校友的成功案例不仅为学校增添了光彩;也激励着在校学生们不断努力、追求卓越。那么,泉州艺术学校好不好?下面,老师带你们一起来了解一下。
面对未来;泉州艺术学校将继续秉持创新精神;不断探索艺术教育的新领域和新方向。学校将紧跟时代步伐;加强与行业、社会的联系与合作;为学生提供更多元化、更实用的教育资源和机会。泉州艺术学校招生名额是多少?下面,老师带你们一起来了解一下。
在泉州艺术学校;传承与创新始终是相互依存、相互促进的。学校既尊重传统艺术的精髓和魅力;又积极吸收现代艺术的元素和理念;将两者巧妙地结合在一起;形成了独具特色的艺术教育体系。泉州艺术学校怎么录取的?下面,老师带你们一起来了解一下。
泉州艺术学校是一段永无止境的艺术之旅的起点。在这里;每一位学子都将踏上属于自己的艺术征途;用才华和汗水书写属于自己的精彩篇章。让我们共同期待并见证这些未来的艺术之星在世界的舞台上绽放光芒!那么,泉州艺术学校招生对象是什么?下面,老师带你们一起来了解一下。
泉州艺术学校,一个让梦想照进现实的地方。在这里,每一个怀揣艺术梦想的心灵都能找到属于自己的舞台;在这里,每一份对美的追求都能得到最真挚的回响。让我们携手并进,在艺术的道路上勇往直前,共同书写属于泉州艺术学校的辉煌篇章!那么,泉州艺术学校有几个校区?下面,老师带你们一起来了解一下。
站在新的历史起点上,泉州艺术学校将继续秉承“厚德载物、艺海无涯”的校训精神,不断探索艺术教育的新模式、新路径,努力培养更多具有社会责任感、创新精神和实践能力的优秀艺术人才,为推动我国文化艺术事业的繁荣发展贡献智慧和力量。泉州艺术学校是公办还是民办?下面,老师带你们一起来了解一下。
泉州艺术学校2024年招生电话是多少?泉州艺术学校深知自身肩负的社会责任,积极投身于公益事业之中。学校经常组织师生参与文化下乡、艺术扶贫等活动,用艺术的力量传递爱与希望,让更多的人感受到艺术的魅力与温暖。那么,泉州艺术学校2024年招生电话是多少?下面,老师带你们一起来了解一下。
2025年中考省级统一考试安排在6月19日—21日举行,具体科目考试时间安排如下:
今年福建中考,大家最关注的莫过于英语是否改革!前段时间,我省召开中考工作研究会议,会议确定了中考英语科题型的变更。
福建又一地市公布初中期末质检时间,2025年漳州初三期末考试将于1月16日-18日进行,2025年漳州初二期末考试将于1月13日-15日进行目前,福建已有4个地市公布一检时间,让我们一起来看看:
近年来,泉州的中职学校在教育质量、升学率等方面取得了显著成绩,为广大学子提供了多样化的升学路径和广阔的就业前景。今天,我们就来一起看看泉州中职学校升学率的排名汇总,帮助您更好地了解这些学校的实力和潜力,做出更明智的志愿选择。
近日,上海市教委发布修订完善后的《上海市初中毕业升学体育考试工作实施方案》,自2022学年的七年级起实行。
亲爱的学弟学妹们:很荣幸能够与你们一起谈一谈初三的学习和生活。
漳州、龙岩、南平市公布2025年初中毕业升学体育与健康考试抽选考项目公开抽签结果。
2024年中考已经结束,上届初三同学的归宿不尽相同,那么2025届的家长纷纷开始焦虑:担心孩子迈不过普高线,不得不面对普职分流。甚至还提议说:能不能取消中考分流?那么针对“普职分流”的真相是什么?2024届福建中考生,到底都去哪里了?
2025届福建中考已经拉开序幕,那么,在初三这一年里需要做好哪些准备?如何不错过最新中考资讯?2025年福建中考交流群正式启动!快来加入吧,让我们一起筑梦中考,圆梦未来!
2024年福建中考最大的变化之一就是新设立了“综合高中班”,那么目前,福建首批综合高中班也已经开学,一起来看看具体是什么情况。如有疑问,可以点击咨询>>在线
2021年福建省中考于6月25日至27日举行,此前,经过两年的准备和过渡,2021年起全省初中毕业生全面实行新的高中阶段学校考试招生方案,形成基于初中学业水平考试成绩、结合综合素质评价的高中阶段学校考试招生录取模式,促进学生全面发展健康成长,维护教育公平。
2021年部分地区的中考时间已经确定了,不仅学生们都在把握时间努力在剩下的日子里创造奇迹,家长朋友们也在用自己的方式给他们加油打气。在中国,中考和高考都是很重要的,都是孩子们的新的起点,所以家长和学校老师都很在意中考分数线,现在也有一些专业人士根据往年情况对中考分数线以及最低分数线做出了预测,大家一起来了解一下2021年中考分数线是多以及2021年中考最低分数线的内容。
语文、数学、英语3门科目满分各150分,按卷面原始分数计入中招录取总分;体育与健康科目满分40分(含基本知识4分,与道德与法治合一张考卷考试,16道选择题);物理、化学、道德与法治、历史、地理、生物学科卷面分数均为100分,分别按卷面成绩的90%、60%、50%、50%、30%、30%计入中招录取总分,满分分别为90分、60分、50分、50分、30分、30分。
根据《龙岩市招生考试委员会关于做好龙岩市2020年初中学业水平考试与高中阶段学校(含五年制高职)招生工作的通知》(岩招委〔2020〕1号),2020年永定区普通高中录取分数线已经